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Mild-slope (MS) type equations are depth-integrated models, which predict under
appropriate conditions refraction and diffraction of linear time-harmonic water waves.
Among these equations, the complementary mild-slope equation (CMSE) was shown
to give better agreement with exact two-dimensional linear theory compared to
other MS-type equations. Nevertheless, it has a disadvantage of being a vector
equation, i.e. it requires solving a system of two coupled partial differential equations.
In addition, for three-dimensional problems, there is a difficulty in constructing the
additional boundary condition needed for the solution. In the present work, it is shown
how the vector CMSE can be transformed into an equivalent scalar equation using
a pseudo-potential formulation. The pseudo-potential mild-slope equation (PMSE)
preserves the accuracy of the CMSE while avoiding the need of an additional
boundary condition. Furthermore, the PMSE significantly reduces the computational
effort relative to the CMSE, since it is a scalar equation. The accuracy of the new
model was tested numerically by comparing it to laboratory data and analytical
solutions.
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1. Introduction
Surface water wave problems are governed, under plausible assumptions, by the

Laplace equation together with free-surface, bottom and lateral boundary conditions.
The three-dimensional problem is complicated to model, and its solution requires
significant computational effort. Hence, a reduction of one dimension is done in
many applications in order to reduce the numerical complications and costs.

A commonly employed approach for this reduction yields mild-slope (MS) type
equations, which apply to linear time-harmonic problems. The origin of this discipline
is the mild-slope equation (MSE) by Berkhoff (1972). The MSE and other MS-type
models achieve this reduction by assuming a vertical profile and then averaging
the governing equation over the depth, which results in the elimination of the vertical
coordinate.

Many works continued Berkhoff’s pioneering derivation. Specifically, the extension
of this model to hold for steep slopes and curvatures was addressed. Rapid undulations
were considered (see Kirby 1986), and the MS assumptions were relaxed (see
Chamberlain & Porter 1995) to hold the higher-order bottom components ∇2h and
(∇h)2. Furthermore, in order to increase the ability to deal with steep slopes, there
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were as well improvements of the fulfilment of the bottom boundary condition (e.g.
Hsu et al. 2006; Chandrasekera & Cheung 2001 and Porter & Porter 2006). These
improved MS-type models were commonly applied; simplified for use (e.g. Lee et al.
1998); investigated analytically (see Agnon 1999) and even extended to more complex
physical problems (e.g. Silva, Salles & Palacio 2002).

Nevertheless, in all of the above mentioned models the only mode considered is
the free wave mode. In order to further improve the results, a set of evanescent
modes were added to the MS-type model (see Massel 1993 and Porter & Staziker
1995). This complicates the model, as it requires solving a coupled set of equations
for the various modes. But, it yields a more complete representation of the flow field,
which results in a superior accuracy. This approach was also developed and extended
to yield even higher accuracy (see Athanassoulis & Belibassakis 1999; Belibassakis,
Athanassoulis & Gerostathis 2001; Chamberlain & Porter 2006).

In contrast to the above formulations, Kim & Bai’s (2004) complementary mild-
slope equation (CMSE) is derived in terms of a stream function vector rather than
a velocity potential, and consists of one vertical profile of the free wave mode.
Unlike the vertical profile in the velocity potential formulations, the vertical profile
in the stream function formulation satisfies exactly the kinematic boundary condition
on uneven bottoms. This leads to better agreements with the exact linear theory
compared to other MS-type equations for two-dimensional problems (see Kim & Bai
2004).

Unfortunately, in the three-dimensional case, the stream function vector formulation
complicates the governing equation by making it a two-dimensional vector equation
rather than a scalar one. This increases the computational effort and complexity,
but this is not the only difficulty in using the CMSE for solving three-dimensional
problems. A set of two coupled differential equations requires two lateral boundary
conditions. Still, by using the impermeable boundary condition only one relation can
be constructed. This leads to a deficiency of one lateral boundary condition, which
Kim & Bai did not refer to.

These difficulties led us to construct a scalar model that still maintains the
advantages of the stream function formulation. Deriving this scalar model is the main
goal of the present work. The plan is to present the CMSE in § 2, and to derive its
alternative vector formulation in § 3 as the first step toward a scalar MS-type model.
A pseudo-potential definition and the pseudo-potential mild slope equation (PMSE)
scalar model, which is the main result of this work, are presented in § 4. The lateral
boundary condition for the PMSE in terms of the pseudo-potential is discussed in
§ 6, and numerical simulations are presented in § 7.

2. The complementary mild-slope equation
Let us consider a time-harmonic linear wave motion over a variable bottom

topography, z = −h(x, y), and define Ψ as a stream function vector

Ψ (x, z) ≡
(

Ψ I

Ψ II

)
≡

∫ z

−h

u(x, ζ ) dζ, u =

(
u

v

)
, x =

(
x

y

)
. (2.1)

Here, x is the horizontal position vector, Re[ue−iωt ] is the horizontal velocity vector
and ω is the angular frequency of the incoming wave. Using (2.1) the velocity field
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and the linear free-surface elevation are found from Ψ by:

u =
∂Ψ

∂z
, w = −∇ · Ψ , (2.2)

η =
1

iω
∇ · Ψ 0, (2.3)

where Re[w e−iωt ] is the vertical velocity, Re[η e−iωt ] is the surface elevation, Ψ 0 is
Ψ on the still water level (z = 0) and ∇ is the horizontal vector differential operator.
Kim & Bai (2004) formulated, as well, the linear time-averaged Lagrangian density
for this problem in terms of Ψ ,

L =
1

2
ρ

∫ ∫ ∫ 0

−h(x,y)

{
|∇ · Ψ |2 +

∣∣∣∣∂Ψ

∂z

∣∣∣∣
2
}

dz − ρg

2ω2
|∇ · Ψ 0|2 . (2.4)

In order to eliminate the z-coordinate and construct a MS-type equation they
assumed a vertical profile

Ψ (x, z, t) = f (k, h, z)Ψ 0(x, t), f (k, h, z) =
sinh(k(h)(z + h))

sinh(k(h)h)
. (2.5)

The vertical profile assumption (2.5) was applied to the Lagrangian (2.4), and a first
variation with respect to Ψ 0 was taken to yield the CMSE:

−∇ (a (∇ · Ψ 0) + b (∇h · Ψ 0)) + (b∇ · Ψ 0 + c∇h · Ψ 0) ∇h − k(h)2aΨ 0 = 0. (2.6)

The coefficients a, b and c are defined by

a(h) =

∫ 0

−h

f 2dz − g

ω2
= −coth(kh)

2k

(
1 +

2kh

sinh(2kh)

)
= −gk2

ω4
CCg, (2.7)

b(h) =

∫ 0

−h

f
∂f

∂h
dz =

1

4 sinh2(kh)

2kh cosh(2kh) − sinh(2kh)

2kh + sinh(2kh)
, (2.8)

c(h) =

∫ 0

−h

(
∂f

∂h

)2

dz

=
k

12 sinh2(kh)

−12kh + 8(kh)3 + 3 sinh(4kh) + 12(kh)2 sinh(2kh)

(2kh + sinh(2kh))2
. (2.9)

Note that the CMSE is presented here with a minor correction. The c-term in equation
(2.6) is the coefficient of (∇h · Ψ 0)∇h and not (∇h · ∇h)Ψ 0 as was given by Kim &
Bai (2004). This correction makes a difference only for three-dimensional problems
and does not change the two-dimensional equation. Kim & Bai’s (2004) numerical
simulations have been conducted only for two-dimensional problems, and therefore,
their results are valid.

3. An alternative vector formulation of the CMSE
The case of a discontinuous bottom slope requires special consideration as it

consists of infinite curvature spikes. Kim & Bai (2004) discussed the jump condition
required for the CMSE in this case. In order to enable for solving without applying
jump conditions, Porter (2003) presented a method that transforms the modified mild-
slope equation (MMSE) to an alternative form containing only first-order bottom
derivatives. The basic concept of Porter’s method is to write the potential as a product
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of two functions: a scaling function and a scaled potential. The scaling function is a
function that depends only on the bottom profile and is defined specifically to cancel
out the term containing the bottom curvature. In this section, the same technique is
applied to the vector CMSE.

Let us define an auxiliary vector ϕ such that

Ψ 0(x) = s(h)ϕ(x), ϕ =

(
ϕI

ϕII

)
, (3.1)

and apply this definition to equation (2.6) to yield

s(h)∇(a(∇ · ϕ)) + ∇((as ′(h) + bs(h))(∇h · ϕ)) + k(h)2as(h)ϕ

+ (s ′(h)a∇ · ϕ − s(h)b∇ · ϕ − (s ′(h)b + s(h)c)(∇h · ϕ))∇h = 0. (3.2)

The additional function allows to arbitrarily impose a desirable condition. This
condition is selected in the same manner of Porter (2003) as follows:

as ′(h) + bs(h) = 0. (3.3)

The solution for s ′(h) from equation (3.3) can be used to eliminate s ′(h) from equation
(3.2). By using the relation ∇a = 2b∇h and further dividing by s(h), equation (3.2)
yields an alternative form of the CMSE

∇ (∇ · ϕ) + k2ϕ + α (∇h · ϕ) ∇h = 0, (3.4)

where

α(h) =
b(h)2 − a(h)c(h)

a(h)2
. (3.5)

Equation (3.4) contains only first derivatives of h, and can be used to solve ϕ for
non-smooth bathymetries. By further investigation of equation (3.4), we can see that
it contains no derivatives of ϕ except for the ∇∇ · operator. For our purpose, this is
the main contribution of definition (3.1), as it will enable formulating the CMSE as
a scalar equation.

The scaling function s(h) can be found analytically. By applying the integrating
factor technique to equation (3.3) the solution takes the form

s(h) = e−
∫

(a/b)dh. (3.6)

The integral can be solved by changing the integration argument from h to kh using
the relation

dh =
d(kh)

k′(h)h + k(h)
, (3.7)

where k′(h) is expressed by taking the derivative of the linear dispersion relation to
yield

s(h) =

√
sinh(2k(h)h)

2k(h)h + sinh(2k(h)h)
. (3.8)

4. A scalar formulation for the CMSE
For three-dimensional problems the CMSE (and also its alternative form given in

§ 3) is essentially a coupled set of two differential equations, which is written in a
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vector stream function formulation. Let us reduce the CMSE to a scalar equation in
term of a new ‘pseudo-potential’:

Ω ≡ ∇ · ϕ. (4.1)

We start by rewriting the alternative form of the CMSE (3.4) using matrix notation

Bϕ = −∇ (∇ · ϕ) (4.2)

where,

B =

(
k2 + αh2

x αhxhy

αhxhy k2 + αh2
y

)
. (4.3)

Applying the pseudo-potential definition (4.1) to equation (4.2) yields

Bϕ = −∇Ω. (4.4)

In order to write equation (4.4) solely in terms of Ω , it will be multiplied by B−1 and
afterward by the operator ∇ · . This leads to the PMSE:

∇ ·
(

B−1∇Ω
)

+ Ω = 0, (4.5)

B−1 =

⎛
⎜⎜⎜⎝

k2 + αh2
y

k2
(
k2 + αh2

x + αh2
y

) − αhxhy

k2
(
k2 + αh2

x + αh2
y

)
− αhxhy

k2
(
k2 + αh2

x + αh2
y

) k2 + αh2
x

k2
(
k2 + αh2

x + αh2
y

)

⎞
⎟⎟⎟⎠ .

Equation (4.5) is a scalar equation rather than a vector equation as the CMSE. By
applying the operator s B−1 to equation (4.4) together with (3.1), Ψ 0 can be expressed
as

Ψ 0 = −s B−1∇Ω, (4.6)

which enables its reconstruction after solving for Ω .

5. Parabolic approximation
For various problems, in which the reflected waves can be neglected, it is plausible

to assume a progressive wave field to the first order. The wave amplitude can
contain the smaller deviations from the first order wave field. The resulting equation
becomes parabolic instead of elliptic. This enables to extensively reduce the computer
storage and CPU time needed for the numerical solution as the wave flow problem
can be solved as a moving front. There are various ways of applying parabolic
approximations. In this section the parabolic approximation will be formulated for
the PMSE following a method used by Kaihatu & Kirby (1995).

Let us assume the problem to have the form of a progressive wave field, so the
pseudo-potential has the following behavior

Ω = A(x, y)ei
∫

k(x,y) dx. (5.1)

Here, A is a complex function slowly varying in x and y that represents the stream
function complex amplitude. Applying equation (5.1) to the building blocks of
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equation (4.5) yields the relations:

Ωx = (Ax + ikA)ei
∫

kdx,

Ωy = [Aei
∫

k dx]y,

Ωxx = (Axx + 2ikAx + ikxA − k2A)ei
∫

kdx,

Ωxy = [(Ax + ikA)ei
∫

k dx]y,

Ωyy = [Aei
∫

k dx]yy.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.2)

The wave is assumed to be propagating mostly along the positive x-direction. It
consists of rapid variation accounted for by the complex exponential given in equation
(5.1). Following Yue & Mei (1980), we scale the derivatives of A as follows

∂A

∂x
= O(ε2),

∂A

∂y
= O(ε). (5.3)

By assuming that the behavior in the x-direction is mostly accounted for by the
complex exponential, and by applying the ordering stated in (5.3), we can neglect the
higher-order term Axx . This changes the equation’s nature from elliptic to parabolic.

In order to factor out the dependence of k in the y-direction, a y-averaged wave
number function k̄(x) can be defined as a reference (see Lozano & Liu 1980),

Ω = a(x, y)ei
∫

k̄(x) dx. (5.4)

Using equations (5.1) and (5.4), a relation between A(x, y) and a(x, y) can be
constructed as

A(x, y) = a(x, y)ei
∫

k̄(x) dx−i
∫

k(x,y) dx. (5.5)

Substituting equation (5.5) to equation set (5.2) yields

Ωx = (ax + ik̄a)ei
∫

k̄ dx,

Ωy = aye
i
∫

k̄ dx,

Ωxx = (2ikax + ikxa − 2k̄ka + k2a)ei
∫

k̄dx,

Ωxy = (axy + ik̄ay)e
i
∫

k̄ dx,

Ωyy = ayye
i
∫

k̄ dx.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.6)

Equation (5.4) and equation set (5.6) together with equation (4.5) form a parabolic
equation in terms of the slowly varying wave amplitude a(x, y).

6. Lateral boundary conditions
In order to formulate a complete mathematical representation of a wave flow

problem, lateral boundary conditions should be supplied in terms of the pseudo-
potential together with the PMSE (4.5). For the stream function formulation the
impermeable boundary condition is a Dirichlet boundary condition that defines the
boundary as a stream line. This concept can be written in the following way,

Ψ 0 · n̂ = 0, (6.1)

where n̂ denotes the outward unit normal vector at the boundary. By using equation
(4.6), it is easy to express the impermeable boundary condition in terms of the
pseudo-potential Ω as

(B−1∇Ω) · n̂ = 0. (6.2)
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From equation (6.2) it can be seen that the pseudo-potential formulation of the
impermeable lateral boundary condition resembles more to the Neumann boundary
condition of the velocity potential formulation.

7. Numerical results
In two-dimensional problems, the CMSE and the PMSE are analytically similar.

Therefore, the superior numerical results presented in Kim & Bai (2004) for the CMSE
hold as well for the PMSE. Some additional numerical calculations are presented in
this section to reassure the use of the PMSE in three-dimensional problems as well.
For the numerical integration the NDSolve function of the MATHEMATICA 6
software was used.

The first numerical simulation is of obliquely incident waves propagating on a
sloped beach. This is a quasi-three-dimensional problem. If we set the coordinate
system so that the bottom changes only in the x-direction, the wave component does
not change its wave number in the y-direction and the formulating functions can be
written as ⎛

⎝Ω(x, y)

Ψ 0(x, y)

Φ(x, y)

⎞
⎠ =

⎛
⎝ω̄(x)

ψ(x)

φ(x)

⎞
⎠ eikyy . (7.1)

The case of 45◦ incidence angle waves on a 45◦ plane beach was chosen for
this simulation. The numerical simulations of the PMSE, the CMSE and the MMSE
(Chamberlain & Porter 1995) together with an exact analytical solution of Ehrenmark
(1998) are given in figure 1. It can be seen that all of the models have good agreements
to the analytical solution with an advantage to the ones of the PMSE and the CMSE.

The second numerical simulation is of monochromatic waves propagating on a
flat bottom with a circular shoal area. The chopped sphere underwater sea mount
acts as a lens that focuses the waves and creates a cusped caustic. The simulations
will be compared to a wave tank experiment conducted by Ito & Tanimoto (1972).
The bathymetry of the experiment and the monitored sections are shown in figure 2.
The constant bottom depth surrounding the shoal is h0 = 0.15 m. The centre of the
circular shoal area is located at (xc, yc) = (1.2 m, 1.2 m) giving the shallowest water
depth as 0.05 m. The water depth at the shoal area (r � 0.8 m) is defined as

h(x, y) = 0.05 m + 0.15625 m−1((x − xc)
2 + (y − yc)

2),

and the wave height and period are H = 1.04 cm and T = 0.511 sec.
A parabolic approximation was applied to the models in order to allow for a less

elaborate simulation. For the MMSE the parabolic approximation was applied in
the same manner as it was done by Kaihatu & Kirby (1995) for the MSE, and for
the PMSE it was applied as was presented in § 5. The numerical simulations of the
models together with the wave gauge measurements of Ito & Tanimoto (1972) for this
experiment are given in figure 3. Note that the results of Ito & Tanimoto (1972) fail to
be symmetric as expected from the symmetry of the experimental set-up. Therefore,
the wave gauge measurements in cross-sections 2 and 3 are duplicated in a mirror
image, since asymmetry is due to experimental errors. The original data is marked in
solid circles, and the mirror image is marked in solid squares. It can be seen that both
the PMSE and the MMSE models have good agreements with the measured data.
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Figure 1. (a) The normalized wave height of the PMSE (dashed), CMSE (dot-dashed) and
the MMSE (dotted) with respect to the exact analytical solution of Ehrenmark (1998) (solid)
for a 45◦ incidence angle waves on a 45◦ plane beach. (b) A magnification of the shallow part
in (a) starting from kh ≈ 0.46.
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Figure 2. The bathymetry in the experiment of Ito & Tanimoto (1972). The wave maker is
positioned at x = 0. Dashed lines indicate the cross-sections monitored by wave gauges. All
units are stated in meters.

8. Summary and conclusions
A new scalar MS-type equation was derived from the vector CMSE. This equation

is named the pseudo-potential mild-slope equation. It allows solving for three-
dimensional problems and produces accurate results with much less computational
effort than the CMSE. Numerical simulations of the model were compared with an
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Figure 3. The normalized wave height for the experiment of Ito & Tanimoto (1972). The
numerical results of the PMSE (solid) and the MMSE (dashed) are given together with the
wave gauge measurements (solid circles/squares). The location of the cross-sections are given
in figure 2.

accurate analytical solution and a wave tank experiment of three-dimensional nature.
The results show very good agreements that reassure the use of this model for solving
practical wave problems.
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